nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.36 32-36
基于模糊粒子群的多回程物流配送线路规划方法
基金项目(Foundation): 安徽省教育厅2021年高校人文社会科学研究项目“基于乡村振兴战略条件下农村电商与物流的融合发展研究”(SK2021A1031)
邮箱(Email):
DOI:
摘要:

目前常规的配送线路规划方法主要以配送开销或单位配送路线长度作为优化目标,并结合配送空间环境方面的限制对约束条件进行设计,由于忽略了配送过程中障碍物对配送效果的阻碍程度,导致算法的规划效果不佳。对此,提出基于模糊粒子群的多回程物流配送线路规划方法。首先,结合栅格法,根据障碍物信息对栅格编码,构建栅格编码与坐标之间的转换关系。其次,引入栅格危险度,对障碍物的阻碍程度表征。再次,以配送线路长度和配送危险度作为目标,构建出多目标函数,并结合配送设备的运行性能对约束条件设计。最后,利用粒子群算法,对构建出的物流配送线路规划函数迭代寻优,在约束条件下求解多目标函数,从而输出最优规划方案。在实验中,检验了该方法的规划效果。测试结果表明,采用该方法规划回程物流配送线路时,配送成本较低,具备较为理想的规划效果。

Abstract:

At present, conventional distribution route planning methods mainly focus on distribution costs or unit distribution route length as optimization objectives, and design constraints based on the constraints of distribution space environment. However, due to the neglect of obstacles in the distribution process, the planning effect of the algorithm is poor. A multi return logistics distribution route planning method based on fuzzy particle swarm optimization is proposed. Firstly, combining the grid method, the grid is encoded based on obstacle information, and the transformation relationship between the grid encoding and coordinates is constructed. Then, the grid hazard level is introduced to characterize the degree of obstruction of obstacles. Secondly, with the length of distribution routes and distribution risk as objectives, a multi-objective function is constructed, and constraint conditions are designed based on the operational performance of distributive equipment. Finally, using particle swarm optimization algorithm, the logistics distribution route planning function constructed is iteratively optimized, and multi-objective functions are solved under constraint conditions to output the optimal planning scheme. In the experiment, the planning effectiveness of the proposed method was tested. The test results show that when using the proposed method to plan the return logistics distribution route, the distribution cost is lower and it has an ideal planning effect.

参考文献

[1] 付芳,刘静华.基于免疫计算的多车物流配送自适应规划仿真[J].计算机仿真,2023,40(10):141-145.

[2] 张倩,金曲楠,张旭,等.基于城轨运输的智能物流配送路线优化研究[J].中国航务周刊,2023(49):73-75.

[3] 杨甜.基于GIS技术的民航物流配送线路优化及虚拟仿真实验研究[J].自动化与仪器仪表,2023(11):113-117.

[4] 程亮,杨骐鸿,郭树明.基于分散型农村居住环境的物流配送分析[J].物流科技,2023,46(18):1-5.

[5] 曹庆奎,张茜茜,任向阳.基于需求可拆分的多车型应急物资配送路径优化研究[J].邢台学院学报,2023,38(3):178-186.

[6] 李奔,王世超.基于理论研究的视角探析蚁群算法与物流配送路线优化策略的关联价值[J].中国储运,2023(7):184-186.

[7] 史健.基于改进遗传算法的鲜活农产品物流配送规划方法研究[J].佳木斯大学学报(自然科学版),2023,41(3):151-155.

[8] 钱叶霞,陈子敬.基于改进模拟退火算法的配送路径优化研究[J].中国商论,2023(8):86-89.

[9] 张岚,赵芳.考虑车辆均衡性约束的物流多路径配送仿真[J].计算机仿真,2023,40(4):145-148,175.

[10] 岳晓鹏,苏春园,何月华,等.基于近代优化算法的生鲜团购配送最优路线模型[J].科技创新与应用,2023,13(10):13-16.

[11] 张大威,张明广,刘文浩,等.基于栅格遗传算法的采购供应物流配送车辆路线规划方法[J].物流科技,2023,46(6):4-7.

[12] 李静.基于距离测算的企业物流配送最优路径规划模型研究[J].淮阴师范学院学报(自然科学版),2023,22(1):28-34.

[13] 付博言,张一帆.基于工厂物流中遗传算法的多AGV路径规划研究[J].中国商论,2023(2):110-113.

[14] 张宜凡,汪宁宁,祖军鹏,等.基于GIS的大件物流配送路径规划问题研究[J].中国储运,2023(1):38-39.

[15] 张志婷,滑川光裕.基于物流配送最优路径选择的研究——以日本国内为研究对象[J].中国物流与采购,2022(18):43-44.

基本信息:

DOI:

中图分类号:F252;TP18

引用信息:

[1]芮飞.基于模糊粒子群的多回程物流配送线路规划方法[J].陇东学院学报,2025,36(02):32-36.

基金信息:

安徽省教育厅2021年高校人文社会科学研究项目“基于乡村振兴战略条件下农村电商与物流的融合发展研究”(SK2021A1031)

检 索 高级检索